Collimating the C11 & ASI290MM

It’s been a while that the C11 was put to use, today I could clean the corrector, and also I found the very very small engraved numbers close to the edge, that line up with the line (and the same number next written next to it) found on the back of the primary. With the tri-bahtinov I could focus and collimate the optics. See also the links here and here.

make sure the three area’s of the mask line up with the three collimations screws of the secondary. The procedure is to focus like a normal bahtinov (ate least one set of lines), and then to look for the area (one of three) where the central line is not nicely central between the spikes. That becomes easily visible when covering an area: when that dims or obscures that is the guilty area, and the corresponding collimating screw needs to the turned (very very slightly). You see the effect on the central line. When centralized, repeat for the third area when necessary.

This is really easy, choose a star high in the sky. On the accuracy of this method I have little data or calculations unfortunately. What I do see is that (with a star in-focus) a very slight turn on the collimation screw (Bob Knob’s in my case), like 1/8 of a turn, gives an immediate effect on the Bahtinov image. The lines across the three sections will not be symmetric anymore. The area that corresponds to the collimation screw that was changed, will display a Bahtinov cross that is not centralised. From this observation I do believe that this method is accurate enough for collimating a SCT.

Continue reading “Collimating the C11 & ASI290MM”

Tri-Bahtinov Mask

We all know the classic Bahtinov mask: it allows to focus a bit more objective compared to visual star focusing.

The Bahtinov will produce Cross-shaped stars, with one clear line that moves along the cross as you focus. When the line is centered in  the cross, you should have achieved perfect focus.

So what is the tri-Bahtinov?

It essentially three Bahtinov masks in one, rotated over 120 degrees. It gives you three lines and three crosses to check collimation, along three axis simulteaneously.

In addition to focussing, the tri-Bahtinov so also indicates collimation status along three axis.

This is interesting for e.g. Schmidt-Cassegrain telescopes, where the collimation is done by push-pull screws of the secondary mirror along three axis.

When you position the tri-Bahtinov alongside these axis, it will give you insight not only per axis of the focus, but also how different these focus points are for each axis.

 

 

 

 

 

 

 

 

A picture of a star using the tri-Bahtinov and the ASI174 Webcam.  Very slight disalignement is visible.

You could basically do the same by turning your classic Bahtinov at 120° angles and check focus each time per individual axis.

Do i use the tri-Bahtinov very often? Not really. I believe it’s a great final check for a fixed SCT on a permanent mount. It will disclose the slightest error in collimation. But for every day use, with an SCT that is moved along and mounted for each session, it might be too cumbersome.

Continue reading “Tri-Bahtinov Mask”

Tri-Bahtinov mask

We all know the classic Bahtinov mask: it allows to focus a bit more objective compared to visual star focusing.

The Bahtinov will produce Cross-shaped stars, with one clear line that moves along the cross as you focus. When the line is centered in  the cross, you should have achieved perfect focus.

So what is the tri-Bahtinov?

It essentially three Bahtinov masks in one, rotated over 120 degrees. It gives you three lines and three crosses to check collimation, along three axis simulteaneously.

In addition to focussing, the tri-Bahtinov also indicates collimation status along three axis.

This is interesting for e.g. Schmidt-Cassegrain telescopes, where the collimation is done by push-pull screws of the secondary mirror along three axis. To know which collimation screw to handle, it’s best to position the tri-bahtinov in line with the three screws.

When you position the tri-Bahtinov alongside these axis, it will give you insight not only per axis of the focus, but also how different the focus position is for each axis.

A picture of a star using the tri-Bahtinov and the ASI174 Webcam.  Very slight disalignement is visible.

You could basically do the same by turning your classic Bahtinov at 120° angles and check focus each time per individual axis. However, all three axis need to be in line at the same time. And that ‘s not  easy when turning 120¨° and seeing one position at the time only.

Do I use the tri-Bahtinov very often? Maybe yes. I believe it’s a great final check for an SCT. It will disclose the slightest error in collimation. For every day use, especially with an SCT that is moved along and mounted for each session, it’s good to check collimation this way. Especially when the scope doesn’t hold it’s collimation very well.

The test with the tri-Bahtinov is rather sensitive, as is shown by turning a collimation screw very very slightly (like 10°): this will become visible in the picture instantly.

Continue reading “Tri-Bahtinov mask”